
Chapter
3

Integration
To remedy deficiencies of Riemann integration that were discussed in Section 1B,

in the last chapter we developed measure theory as an extension of the notion of the
length of an interval. Having proved the fundamental results about measures, we are
now ready to use measures to develop integration with respect to a measure. As we
will see, this new method of integration fixes many of the problems with Riemann
integration.

Statue in Milan of Italian mathematician Maria Gaetana Agnesi,
who in 1748 published one of the first calculus textbooks.

A translation of her book into English was published in 1801.
In this chapter, we will develop a method of integration more

powerful than methods contemplated by the pioneers of calculus.
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72 Chapter 3 Integration

3A Integration with Respect to a Measure
We will first define the integral of a nonnegative function with respect to a measure.
Then by writing a real-valued function as the difference of two nonnegative functions,
we will define the integral of a real-valued function with respect to a measure.

The notation introduced below will be useful in our development of integration.

3.1 Definition order relation on functions

Suppose X is a set and f , g : X → [−∞, ∞] are functions. The notation g ≤ f
means g(x) ≤ f (x) for all x ∈ X.

Integration of Nonnegative Functions

The symbol d in the expression∫
f dµ has no meaning, serving only

to separate f from µ. Because the d
in
∫

f dµ does not represent another
object, some mathematicians prefer
typesetting an upright d in this
situation, producing

∫
f dµ.

However, the upright d looks jarring
to some readers who are accustomed
to italicized symbols. This book
takes the compromise position of
using slanted d instead of
math-mode italicized d in integrals.

Suppose (X,S , µ) is a measure space.
We will denote the integral of an S-
measurable function f with respect to µ
by
∫

f dµ. Our basic motivation for the
definition of this integral is that we want∫

χA dµ to equal µ(A) for all A ∈ S .
The operation of integration should

also be linear. Thus we want∫
(

m

∑
k=1

akχAk
) dµ

to equal the sum ∑m
k=1 akµ(Ak) for all

A1, . . . , Am ∈ S and a1, . . . , am > 0 (we
restrict to positive values of a1, . . . , am at
this stage to avoid expressions of the form
∞−∞ and 0 ·∞).

Suppose f : X → [0, ∞] is an S-measurable function. As a final piece of moti-
vation for the definition of

∫
f dµ, note that f can be approximated from below by

functions of the form discussed in the paragraph above (see 2.81 and its proof). Thus
we are led to the following definition.

3.2 Definition integral of a nonnegative function

Suppose (X,S , µ) is a measure space and f : X → [0, ∞] is a measurable
function. The integral of f with respect to µ, denoted

∫
f dµ, is defined by

∫
f dµ = sup

{ m

∑
k=1

akµ(Ak) :
m

∑
k=1

akχAk
≤ f , where m ∈ Z+,

a1, . . . , am > 0, and A1, . . . , Am ∈ S
}

.
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Section 3A Integration with Respect to a Measure 73

3.3 Example integral of 0 is 0

Suppose (X,S , µ) is a measure space. Let 0 denote the constant function from X
to [0, ∞] whose value is 0 at each element of X. Then∫

0 dµ = 0

because if ∑m
k=1 akχAk

≤ 0 with a1, . . . , am > 0, then each Ak = ∅ and hence
∑m

k=1 akµ(Ak) = 0.

3.4 Example integral of characteristic function of rational numbers is 0

If λ is Lebesgue measure on R, then
∫

χQ dλ = 0 because if ∑m
k=1 akχAk

≤ χQ
with each ak > 0, then each Ak is a countable set and hence λ(Ak) = 0 for each k.

Because the integral (with respect to Lebesgue measure) of the characteristic
function of Q is defined and equals 0, even at this early stage in our development of
the integral we have fixed one of the deficiencies of Riemann integration.

The definition of
∫

f dµ given in 3.2 should remind you of the definition of the
lower Riemann integral (see 1.7). Indeed, suppose µ is Lebesgue measure on the
Borel subsets of an interval [a, b] and f : [a, b] → R is a bounded function. Then
the right side of the equation in 3.2 would be exactly the lower Riemann integral
L( f , [a, b]) if we required the sets Ak to be intervals (rather than allowing them to be
Borel measurable sets).

The lower Riemann integral is not additive, even for bounded nonnegative measur-
able functions. For example, if f = χQ and g = χR \Q, then

L( f , [0, 1]) = 0 and L(g, [0, 1]) = 0 but L( f + g, [0, 1]) = 1.

In contrast, if λ is Lebesgue measure on the Borel subsets of [0, 1], then∫
f dλ = 0 and

∫
g dλ = 1 and

∫
( f + g) dλ = 1.

More generally, we will prove that
∫
( f + g) dµ =

∫
f dµ +

∫
g dµ for every

measure µ and for all nonnegative measurable functions f and g (see 3.21). Thus
integration with respect to a measure, even though it is defined similarly to the lower
Riemann integral (with the big exception of allowing measurable sets instead of just
intervals), has considerably nicer properties than the lower Riemann integral.

3.5 Example integration with respect to counting measure is summation

Suppose µ is counting measure on Z+ and b1, b2, . . . is a sequence of nonnegative
numbers. Think of b as the function from Z+ to [0, ∞) defined by b(n) = bn. Then∫

b dµ =
∞

∑
n=1

bn,

as you should verify.
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74 Chapter 3 Integration

The representation of a simple function h in the form ∑m
k=1 akχAk

is not unique.
Requiring the numbers a1, . . . , am to be nonzero and distinct and the sets A1, . . . , Am
to be nonempty and disjoint does produce a standard representation [take Ak =
h−1({ak}), where a1, . . . , am are the distinct nonzero values of h]. The following
lemma shows that in the definition of the integral of a nonnegative function, we could
have required that the simple function have the standard representation. Doing so
would simplify some proofs but complicate other proofs.

3.6 Useful lemma

Suppose (X,S , µ) is a measure space. Suppose a1, . . . , am, b1, . . . , bn ∈ R, and
A1, . . . , Am, B1, . . . , Bn ∈ S are such that ∑m

k=1 akχAk
= ∑n

j=1 bjχBj
. Then

m

∑
k=1

akµ(Ak) =
n

∑
j=1

bjµ(Bj).

Proof Suppose A1 and A2 are not disjoint. Then we can write

3.7 a1χA1
+ a2χA2

= a1χA1 \ A2
+ a2χA2 \ A1

+ (a1 + a2)χA1 ∩ A2
,

where the three sets appearing on the right side of the equation above are disjoint.
Now A1 = (A1 \ A2) ∪ (A1 ∩ A2) and A2 = (A2 \ A1) ∪ (A1 ∩ A2); each

of these unions is a disjoint union. Thus µ(A1) = µ(A1 \ A2) + µ(A1 ∩ A2) and
µ(A2) = µ(A2 \ A1) + µ(A1 ∩ A2). Hence

a1µ(A1) + a2µ(A2) = a1µ(A1 \ A2) + a2µ(A2 \ A1) + (a1 + a2)µ(A1 ∩ A2).

The equation above, in conjunction with 3.7, shows that if we replace A1, A2 by the
disjoint sets A1 \ A2, A2 \ A1, A1 ∩ A2 and make the appropriate adjustments to
the coefficients a1, . . . , am, then the value of the sum ∑m

k=1 akµ(Ak) is unchanged
(although m has increased by 1).

Repeating this process with all pairs of subsets among A1, . . . , Am that are
not disjoint after each step, in a finite number of steps we can convert the ini-
tial list A1, . . . , Am into a disjoint list of subsets without changing the value of
∑m

k=1 akµ(Ak).
The next step is to make the numbers a1, . . . , am distinct. This is done by replacing

the sets corresponding to each ak by the union of those sets, and using finite additivity
of the measure µ to show that the value of the sum ∑m

k=1 akµ(Ak) does not change.
Finally, drop any terms for which ak = 0 or Ak = ∅, getting the standard

representation for a simple function. We have now shown that the original value
of ∑m

k=1 akµ(Ak) is equal to the value if we use the standard representation of the
simple function ∑m

k=1 akχAk
. The same procedure can be used with the representation

∑n
j=1 bjχBj

to show that ∑n
j=1 bjµ(χBj

) equals what we would get with the standard

representation. Hence ∑m
k=1 akµ(Ak) = ∑n

j=1 bjµ(Bj).

Now we can show that the integral of a nonnegative simple function is what we
expect it to be.
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Section 3A Integration with Respect to a Measure 75

3.8 Integral of a linear combination of characteristic functions

Suppose (X,S , µ) is a measure space, B1, . . . , Bn ∈ S , and b1, . . . , bn > 0 .
Then ∫ ( n

∑
j=1

bjχBj

)
dµ =

n

∑
j=1

bjµ(Bj).

Proof Because
n

∑
j=1

bjχBj
≤

n

∑
j=1

bjχBj
, the definition of

∫ ( n

∑
j=1

bjχBj

)
dµ implies

that ∫ ( n

∑
j=1

bjχBj

)
dµ ≥

n

∑
j=1

bjµ(Bj).

To prove an inequality in the other direction, suppose a1, . . . , am > 0 and
A1, . . . , Am ∈ S are such that

3.9
m

∑
k=1

akχAk
≤

n

∑
j=1

bjχBj
.

Then
n

∑
j=1

bjχBj
−

m

∑
k=1

akχAk
=

p

∑
i=1

ciχCi

for some c1, . . . , cp > 0 and some C1, . . . , Cp ∈ S (this follows from writing the left
side of the equation above in the standard representation for a simple function; 3.9
implies that each ci > 0 in this standard representation).

Now apply 3.6 to both sides of the equation above, getting

n

∑
j=1

bjµ(Bj)−
m

∑
k=1

akµ(Ak) =
p

∑
i=1

ciµ(Ci).

The right side of the equation above is nonnegative. Hence

m

∑
k=1

akµ(Ak) ≤
n

∑
j=1

bjµ(Bj).

Because
∫ ( n

∑
j=1

bjχBj

)
dµ is defined to be the supremum of values of the left side

of the inequality above, we conclude that
∫ ( n

∑
j=1

bjχBj

)
dµ ≤

n

∑
j=1

bjµ(Bj), which

completes the proof.

Note that 3.8 implies that if (X,S , µ) is a measure space and f : X → [0, ∞] is
S-measurable, then∫

f dµ = sup
{∫

h dµ : h is a simple S-measurable function and 0 ≤ h ≤ f
}

.
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As a special case of 3.8, if (X,S , µ) is a measure space and B ∈ S , then∫
χB dµ = µ(B), as we expect.
The next three easy results give unsurprising properties of integrals.

3.10 Integration is order preserving

Suppose (X,S , µ) is a measure space and f , g : X → [0, ∞] are S-measurable
functions such that f ≤ g. Then

∫
f dµ ≤

∫
g dµ.

Proof The supremum defining
∫

f dµ is taken over a subset of the corresponding
set for the supremum defining

∫
g dµ. Thus

∫
f dµ ≤

∫
g dµ.

3.11 Bounding the integral of a nonnegative function

Suppose (X,S , µ) is a measure space and f : X → [0, ∞) is S-measurable. Then∫
f dµ ≤ µ(X) sup

x∈X
f (x).

Proof Let c = supx∈X f (x). Because f ≤ c, we have∫
f dµ ≤

∫
c dµ = cµ(X),

where the inequality above comes from 3.10 and the equality above comes from 3.8
(with n = 1 and B1 = X).

3.12 Integration is positively homogeneous

Suppose (X,S , µ) is a measure space, f : X → [0, ∞] is S-measurable, and
c ≥ 0. Then

∫
c f dµ = c

∫
f dµ.

Proof The supremum defining
∫

c f dµ is taken over a set consisting of c times the
set whose supremum defines

∫
f dµ. Thus

∫
c f dµ = c

∫
f dµ.

Proving the additivity of integration is considerably more complicated than proving
homogeneity (3.12). The next two results give special cases of additivity (first
requiring both functions to be simple, then requiring one of the functions to be
constant), which will be used in the next subsection to prove additivity more generally.

3.13 Integral of a sum of nonnegative simple functions

Suppose (X,S , µ) is a measure space and f , g : X → [0, ∞) are S-measurable
simple functions. Then

∫
( f + g) dµ =

∫
f dµ +

∫
g dµ.

Proof The desired result follows immediately from 3.8.
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3.14 Integral of a constant plus a function

Suppose (X,S , µ) is a measure space and f : X → [0, ∞) is an S-measurable
function. Then ∫

(c + f ) dµ = cµ(X) +
∫

f dµ

for every c > 0.

Proof Let c > 0. First suppose

3.15 a1, . . . , am > 0 and A1, . . . , Am ∈ S and
m

∑
k=1

akχAk
≤ f .

Then cχX + ∑m
k=1 akχAk

≤ c + f . Thus the definition of the integral of c + f implies

∫
(c + f ) dµ ≥ cµ(X) +

m

∑
k=1

akµ(Ak).

In the inequality above, taking the supremum over all choices satisfying 3.15 shows
that ∫

(c + f ) dµ ≥ cµ(X) +
∫

f dµ.

To prove the inequality in the other direction, suppose now that

3.16 a1, . . . , am > 0 and A1, . . . , Am ∈ S are disjoint and
m

∑
k=1

akχAk
≤ c + f .

Let bk = max{ak, c} for k = 1, . . . , m. Then bk − c ≥ 0 for k = 1, . . . , m and

m

∑
k=1

(bk − c)χAk
(x) ≤ f (x)

for every x ∈ X. The definition of the integral of f implies

m

∑
k=1

(bk − c)µ(Ak) ≤
∫

f dµ,

which implies
m

∑
k=1

akµ(Ak) ≤ cµ(X) +
∫

f dµ.

In the inequality above, taking the supremum over all choices satisfying 3.16 shows
that ∫

(c + f ) dµ ≤ cµ(X) +
∫

f dµ,

completing the proof.
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Monotone Convergence Theorem
The next result allows us to interchange limits and integrals in certain circumstances.
We will see more theorems of this nature in the next section.

3.17 Monotone Convergence Theorem

Suppose (X,S , µ) is a measure space and 0 ≤ f1 ≤ f2 ≤ · · · is an increasing
sequence of S-measurable functions. Define f : X → [0, ∞] by

f (x) = lim
n→∞

fn(x)

Then
lim

n→∞

∫
fn dµ =

∫
f dµ.

Idea of this proof: Use Egorov’s
Theorem to show that the
convergence is uniform off a set
where the integral is small.

Proof The function f is S-measurable
(by 2.50). We will assume that

∫
f dµ <

∞. The case where
∫

f dµ = ∞ uses
similar ideas and is left to the reader as an
exercise.

Suppose ε > 0. The definition of
∫

f dµ implies that there exists a simple
measurable function h : X → [0, ∞) such that h ≤ f and

3.18
∫

f dµ−
∫

h dµ <
ε

3
.

Let H equal the maximum value of the function h (which takes on only finitely many
values).

Let B = {x ∈ X : h(x) 6= 0}. Then µ(B) < ∞ (because h is a simple function
and

∫
h dµ ≤

∫
f dµ < ∞). Thus by Egorov’s Theorem (2.76), there exists a set

E ⊂ B such that E ∈ S and µ(B \ E) < ε
3H and f1, f2, . . . converges uniformly to f

on E. Now for each n ∈ Z+ we have∫
h dµ−

∫
fn dµ =

∫
χB \ E h dµ +

∫
χE h dµ−

∫
fn dµ

≤
∫

χB \ E h dµ +
∫

χE h dµ−
∫

χE fn dµ

≤ ε

3
+
∫

χE h dµ−
∫

χE fn dµ,3.19

where the first line comes from 3.13, the second line comes from 3.10, and the third
line comes from 3.11.

If n is sufficiently large, then

h(x) ≤ f (x)

<
ε

3µ(E)
+ fn(x)

for all x ∈ E (because f1, f2, . . . converges uniformly to f on E). Multiplying the
inequality above by χE and then integrating gives
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Section 3A Integration with Respect to a Measure 79

∫
χEh dµ ≤

∫
χE

( ε

3µ(E)
+ fn(x)

)
dµ

≤ ε

3
+
∫

χE fn dµ

for n sufficiently large, where the last line comes from 3.14 applied to the measure
on E that equals µ restricted to the S-measurable subsets of E.

Using the last inequality with 3.19 shows that for n sufficiently large, we have∫
h dµ−

∫
fn dµ <

2ε

3
.

Adding the inequality above to 3.18 gives∫
f dµ−

∫
fn dµ < ε,

for n sufficiently large. Because fn ≤ f , we have
∫

fn dµ ≤
∫

f dµ. Thus the
inequality above completes the proof.

3.20 Example Monotone Convergence Theorem fails for decreasing sequence

The result we just proved is
traditionally and unfortunately
called the Monotone Convergence
Theorem. However, it should be
called the Increasing Convergence
Theorem because it does not hold for
decreasing sequences of nonnegative
functions, as shown by this example.

Suppose λ is Lebesgue measure on R.
Let fn be the constant function 1

n on R,
and let f be the constant function 0 on R.
Then all these functions are nonnegative,
f1 ≥ f2 ≥ · · · , and limn→∞ fn(x) =
f (x) for every x ∈ R. However,

lim
n→∞

∫
fn dλ 6=

∫
f dλ

because
∫

fn dλ = ∞ and
∫

f dλ = 0.

Now we can prove that integration is additive on nonnegative functions.

3.21 Integral of a sum of nonnegative functions

Suppose (X,S , µ) is a measure space and f , g : X → [0, ∞] are S-measurable
functions. Then ∫

( f + g) dµ =
∫

f dµ +
∫

g dµ.

Proof We already know (see 3.13) that the result is true for simple S-measurable
functions. Now approximate f and g by increasing sequences of simple nonnegative
S-measurable functions and use the Monotone Convergence Theorem.

More precisely, let f1, f2, . . . and g1, g2, . . . be increasing sequences of sim-
ple nonnegative S-measurable functions such that limn→∞ fn(x) = f (x) and
limn→∞ gn(x) = g(x) (see 2.81). Then f1 + g1, f2 + g2, . . . is an increasing
sequence of simple nonnegative S-measurable functions such that

lim
n→∞

( fn + gn)(x) = ( f + g)(x).

Thus the Monotone Convergence Theorem (3.17) and 3.13 imply
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∫
( f + g) dµ = lim

n→∞

∫
( fn + gn) dµ

= lim
n→∞

∫
fn dµ + lim

n→∞

∫
gn dµ

=
∫

f dµ +
∫

g dµ,

as desired.

Integration of Real-Valued Functions
The following definition gives us a standard way to write an arbitrary real-valued
function as the difference of two nonnegative functions.

3.22 Definition f+; f−

Suppose f : X → [−∞, ∞] is a function. Define functions f+ and f− from X to
[0, ∞] by

f+(x) =

{
f (x) if f (x) ≥ 0,
0 if f (x) < 0

and f−(x) =

{
0 if f (x) ≥ 0,
− f (x) if f (x) < 0.

Note that if f : X → [−∞, ∞] is a function, then

f = f+ − f− and | f | = f+ + f−.

The decomposition above allows us to extend our definition of integration to functions
that take on negative as well as positive values.

3.23 Definition integral of a real-valued function

Suppose (X,S , µ) is a measure space and f : X → [−∞, ∞] is a measurable
function such that at least one of

∫
f+ dµ and

∫
f− dµ is finite. The integral of

f with respect to µ, denoted
∫

f dµ, is defined by∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

If f ≥ 0, then f+ = f and f− = 0 and thus this definition is consistent with the
previous definition of the integral of a nonnegative function.

3.24 Example a function whose integral is not defined

Suppose f : R→ R is the function defined by

f (x) =

{
1 if x ≥ 0,
−1 if x < 0

and λ is Lebesgue measure on R. Then
∫

f dλ is not defined because
∫

f+ dλ = ∞
and

∫
f− dλ = ∞.
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The next result says that the integral of a number times a function is exactly what
we expect.

3.25 Integration is homogeneous

Suppose (X,S , µ) is a measure space and f : X → [−∞, ∞] is a function such
that

∫
f dµ is defined. If c ∈ R, then∫

c f dµ = c
∫

f dµ.

Proof Suppose c ≥ 0. Then∫
c f dµ =

∫
(c f )+ dµ−

∫
(c f )− dµ

=
∫

c f+ dµ−
∫

c f− dµ

= c
(∫

f+ dµ−
∫

f− dµ
)

= c
∫

f dµ,

where the third line comes from 3.12.
Now suppose c < 0. Then −c > 0 and∫

c f dµ =
∫
(c f )+ dµ−

∫
(c f )− dµ

=
∫
(−c) f− dµ−

∫
(−c) f+ dµ

= (−c)
(∫

f− dµ−
∫

f+ dµ
)

= c
∫

f dµ,

completing the proof.

Now we can prove that integration with respect to a measure has the additive
property that is required for a good theory of integration.

3.26 Integration is additive

Suppose (X,S , µ) is a measure space and f , g : X → [−∞, ∞] are S-measurable
functions such that

∫
| f | dµ < ∞ and

∫
|g| dµ < ∞. Then∫

( f + g) dµ =
∫

f dµ +
∫

g dµ.
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Proof Clearly

( f + g)+ − ( f + g)− = f + g

= f+ − f− + g+ − g−.

Thus
( f + g)+ + f− + g− = ( f + g)− + f+ + g+.

Both sides of the equation above are sums of nonnegative functions. Thus integrating
both sides with respect to µ and using 3.21 gives∫

( f + g)+ dµ +
∫

f− dµ +
∫

g− dµ =
∫
( f + g)− dµ +

∫
f+ dµ +

∫
g+ dµ.

Rearranging the equation above gives∫
( f + g)+ dµ−

∫
( f + g)− dµ =

∫
f+ dµ−

∫
f− dµ +

∫
g+ dµ−

∫
g− dµ,

where the left side is not of the form ∞−∞ because ( f + g)+ ≤ f+ + g+ and
( f + g)− ≤ f− + g−. The equation above can be rewritten as∫

( f + g) dµ =
∫

f dµ +
∫

g dµ,

completing the proof.

The inequality in the next result receives frequent use.

3.27 Absolute value of integral ≤ integral of absolute value

Suppose (X,S , µ) is a measure space and f : X → [−∞, ∞] is a function such
that

∫
f dµ is defined. Then ∣∣∣∫ f dµ

∣∣∣ ≤ ∫ | f | dµ.

Proof Because
∫

f dµ is defined, f is an S-measurable function and at least one of∫
f+ dµ and

∫
f− dµ is finite. Thus∣∣∣∫ f dµ

∣∣∣ = ∣∣∣∫ f+ dµ−
∫

f− dµ
∣∣∣

≤
∫

f+ dµ +
∫

f− dµ

=
∫
( f+ + f−) dµ

=
∫
| f | dµ,

as desired.
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EXERCISES 3A

1 Suppose X is a set, S is a σ-algebra on X, and c ∈ X. Define the Dirac measure
δc on (X,S) by

δc(E) =

{
1 if c ∈ E,
0 if c /∈ E.

Prove that if f : X → [0, ∞] is S-measurable, then
∫

f dδc = f (c).
[Careful: {c} may not be in S .]

2 Suppose (X,S , µ) is a measure space and f : X → [0, ∞] is an S-measurable
function. Prove that∫

f dµ > 0 if and only if µ({x ∈ X : f (x) > 0}) > 0.

3 Give an example of a Borel measurable function f : [0, 1]→ (0, ∞) such that
L( f , [0, 1]) = 0.
[Recall that L( f , [0, 1]) denotes the lower Riemann integral, which was defined
in Section 1A. If λ is Lebesgue measure on [0, 1], then the previous exercise
states that

∫
f dλ > 0 for this function f , which is what we expect of a positive

function. Thus even though both L( f , [0, 1]) and
∫

f dλ are defined by taking
the supremum of approximations from below, Lebesgue measure captures the
right behavior for this function f and the lower Riemann integral does not.]

4 Verify the assertion that integration with respect to counting measure is summa-
tion (Example 3.5).

5 Suppose X is a set, S is the σ-algebra of all subsets of X, and w : X → [0, ∞]
is a function. Define a measure µ on (X,S) by

µ(E) = ∑
x∈E

w(x)

for E ⊂ X. Prove that if f : X → [0, ∞] is a function, then∫
f dµ = ∑

x∈X
w(x) f (x),

where the infinite sums above are defined as the supremum of all sums over
finite subsets of X.

6 Prove the Monotone Convergence Theorem (3.17) in the case when
∫

f dµ = ∞.

7 Suppose (X,S , µ) is a measure space and f : X → [0, ∞] is an S-measurable
function. Define µ f : S → [0, ∞] by

µ f (A) =
∫

χA f dµ

for A ∈ S . Prove that µ f is a measure on (X,S).
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8 Suppose (X,S , µ) is a measure space and f1, f2, . . . is a sequence of nonnegative
S-measurable functions. Define f : X → [0, ∞] by f (x) = ∑∞

n=1 fn(x). Prove
that ∫

f dµ =
∞

∑
n=1

∫
fn dµ.

9 Give an example to show that the Monotone Convergence Theorem (3.17) can
fail if the hypothesis that f1, f2, . . . are nonnegative functions is dropped.

10 Give an example of a sequence x1, x2, . . . of real numbers such that

lim
M→∞

M

∑
n=1

xn exists in R,

but
∫

x dµ is not defined, where µ is counting measure on Z+ and x is the
function from Z+ to R defined by x(n) = xn.

For x1, x2, . . . a sequence in [−∞, ∞], define lim inf
n→∞

xn by

lim inf
n→∞

xn = lim
n→∞

inf{xn, xn+1, . . .}.

Note that inf{xn, xn+1, . . .} is an increasing function of n; thus the limit above
on the right exists in [−∞, ∞].

11 Suppose that (X,S , µ) is a measure space and f1, f2, . . . is a sequence of non-
negative S-measurable functions on X. Define a function f : X → [0, ∞] by
f (x) = lim inf

n→∞
fn(x). Prove that∫

f dµ ≤ lim inf
n→∞

∫
fn dµ.

[The result above is called Fatou’s Lemma. Some textbooks prove Fatou’s
Lemma and then use it to prove the Monotone Convergence Theorem. Here
we are taking the reverse approach—you should be able to use the Monotone
Convergence Theorem to give a clean proof of Fatou’s Lemma.]

12 Henri Lebesgue wrote the following about his method of integration:

I have to pay a certain sum, which I have collected in my pocket. I
take the bills and coins out of my pocket and give them to the creditor
in the order I find them until I have reached the total sum. This is the
Riemann integral. But I can proceed differently. After I have taken
all the money out of my pocket I order the bills and coins according
to identical values and then I pay the several heaps one after the other
to the creditor. This is my integral.

Use 3.8 to explain what Lebesgue meant and to explain why integration of a
function with respect to a measure can be thought of as partitioning the range of
the function, while Riemann integration depends upon partitioning the domain
of the function.
[The quote above is taken from page 796 of The Princeton Companion to
Mathematics, edited by Timothy Gowers.]
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3B Limits of Integrals & Integrals of Limits
This section will focus on interchanging limits and integrals. Those tools will allow
us to characterize the Riemann integrable functions in terms of Lebesgue measure.
We will also develop some approximation tools that will be useful in later chapters.

Bounded Convergence Theorem
We begin this section by introducing some useful notation.

3.28 Definition integration on a subset

Suppose (X,S , µ) is a measure space and E ∈ S . If f : X → [−∞, ∞] is an
S-measurable function, then

∫
E f dµ is defined by∫
E

f dµ =
∫

χE f dµ

if the right side of the equation above is defined; otherwise
∫

E f dµ is undefined.

Alternatively, you can think of
∫

E f dµ as
∫

f |E dµE, where µE is the measure
obtained by restricting µ to the elements of S that are contained in E.

Notice that according to the definition above, the notation
∫

X f dµ means the same
as
∫

f dµ.
The following easy result illustrates the use of this new notation. We now need to

adopt the convention that 0 ·∞ and ∞ · 0 should both be interpreted to be 0. Notice
that both 0 ·∞ and ∞ · 0 could appear in the conclusion of the next result.

3.29 Bounding an integral

Suppose (X,S , µ) is a measure space, E ∈ S , and f : X → [−∞, ∞] is a
function such that

∫
E f dµ is defined. Then∣∣∣∫

E
f dµ

∣∣∣ ≤ µ(E) sup
x∈E
| f (x)|.

Proof Let c = supx∈E| f (x)|. We have∣∣∣∫
E

f dµ
∣∣∣ = ∣∣∣∫ χE f dµ

∣∣∣
≤
∫

χE| f | dµ

≤
∫

cχE dµ

= cµ(E),

where the second line comes from 3.27, the third line comes from 3.10, and the fourth
line comes from 3.8.
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The next result could be proved as a special case of the Dominated Convergence
Theorem (3.35), which we will prove later in this section. Thus you could skip the
proof here. However, sometimes you get more insight by seeing an easier proof of an
important special case. Thus you may want to read the easy proof of the Bounded
Convergence Theorem that is presented next.

3.30 Bounded Convergence Theorem

Suppose (X,S , µ) is a measure space with µ(X) < ∞. Suppose f : X → R is
S-measurable and f1, f2, . . . are S-measurable functions from X to R such that

lim
n→∞

fn(x) = f (x)

for all x ∈ X. If there exists c ∈ (0, ∞) such that

| fn(x)| ≤ c

for all n ∈ Z+ and all x ∈ X, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Note the key role of Egorov’s
Theorem, which states that pointwise
convergence is close to uniform
convergence, in the proofs involving
interchanging limits and integrals.

Proof Suppose c satisfies the hypothesis
of this theorem. Let ε > 0. By Egorov’s
Theorem (2.76), there exists E ∈ S such
that µ(X \ E) < ε

4c and f1, f2, . . . con-
verges uniformly to f on E. Now

∣∣∣∫ fn dµ−
∫

f dµ
∣∣∣ = ∣∣∣∫

X\E
fn dµ−

∫
X\E

f dµ +
∫

E
( fn − f ) dµ

∣∣∣
≤
∫

X\E
| fn| dµ +

∫
X\E
| f | dµ +

∫
E
| fn − f | dµ

<
ε

2
+ µ(E) sup

x∈E
| fn(x)− f (x)|,

where the last inequality follows from 3.29. Because f1, f2, . . . converges uniformly
to f on E and µ(E) < ∞, the right side of the inequality above is less than ε for n
sufficiently large, which completes the proof.

Sets of Measure 0 in Integration Theorems

Suppose (X,S , µ) is a measure space. If f , g : X → [−∞, ∞] are S-measurable
functions and

µ({x ∈ X : f (x) 6= g(x)}) = 0,

then the definition of an integral implies that
∫

f dµ =
∫

g dµ (or both integrals are
undefined). Because what happens on a set of measure 0 often does not matter, the
following definition is useful.
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3.31 Definition almost every

Suppose (X,S , µ) is a measure space. A set E ∈ S is said to contain µ-almost
every element of X if µ(X \ E) = 0. If the measure µ is clear from the context,
then the phrase almost every is usually used.

For example, almost every real number is irrational (with respect to the usual
Lebesgue measure on R) because |Q| = 0.

Theorems about integrals can almost always be relaxed so that the hypotheses
apply only almost everywhere instead of everywhere. For example, consider the
Bounded Convergence Theorem (3.30), one of whose hypotheses is that

lim
n→∞

fn(x) = f (x)

for all x ∈ X. Suppose that the hypotheses of the Bounded Convergence Theorem
hold except that the equation above holds only almost everywhere, meaning there
is a set E ∈ S such that µ(X \ E) = 0 and the equation above holds for all x ∈ E.
Define new functions g1, g2, . . . and g by

gn(x) =

{
fn(x) if x ∈ E,
0 if x ∈ X \ E

and g(x) =

{
f (x) if x ∈ E,
0 if x ∈ X \ E.

Then
lim

n→∞
gn(x) = g(x)

for all x ∈ X. Hence the Bounded Convergence Theorem implies that

lim
n→∞

∫
gn dµ =

∫
g dµ,

which immediately implies that

lim
n→∞

∫
fn dµ =

∫
f dµ

because
∫

gn dµ =
∫

fn dµ and
∫

g dµ =
∫

f dµ.

Dominated Convergence Theorem
The next result tells us that if a nonnegative function has a finite integral, then its
integral over all small sets (in the sense of measure) is small.

3.32 Integrals on small sets are small

Suppose (X,S , µ) is a measure space, g : X → [0, ∞] is S-measurable, and∫
g dµ < ∞. Then for every ε > 0, there exists δ > 0 such that∫

B
g dµ < ε

for every set B ∈ S such that µ(B) < δ.
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Proof Suppose ε > 0. Let h be a simple S-measurable function such that 0 ≤ h ≤ g
and ∫

g dµ−
∫

h dµ <
ε

2
;

the existence h with these properties follows from the definition of the integral. Let

H = max{h(x) : x ∈ X}
and let δ > 0 be such that Hδ < ε

2 .
Suppose B ∈ S and µ(B) < δ. Then∫

B
g dµ =

∫
B
(g− h) dµ +

∫
B

h dµ

≤
∫
(g− h) dµ + Hµ(B)

<
ε

2
+ Hδ

< ε,

as desired.

Some theorems, such as Egorov’s Theorem (2.76) have as a hypothesis that the
measure of the entire space is finite. The next result sometimes allows us to get
around this hypothesis by restricting attention to a key set of finite measure.

3.33 Integrable functions live mostly on sets of finite measure

Suppose (X,S , µ) is a measure space, g : X → [0, ∞] is S-measurable, and∫
g dµ < ∞. Then for every ε > 0, there exists E ∈ S such that µ(E) < ∞ and∫

X\E
g dµ < ε.

Proof Suppose ε > 0. By the definition of the integral of a nonnegative function
(see 3.2), there exists a simple S-measurable function h : X → [0, ∞) such that
h ≤ g and

3.34
∫

g dµ−
∫

h dµ < ε.

Let E = {x ∈ X : h(x) 6= 0}. Then µ(E) < ∞ (because otherwise we would have∫
g dµ = ∞). Because h(x) = 0 for all x ∈ X \ E, we have∫

X\E
g dµ =

∫
X\E

(g− h) dµ

≤
∫
(g− h) dµ

< ε,

where the last inequality comes from 3.34.
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Suppose (X,S , µ) is a measure space and f1, f2, . . . is a sequence of S-measurable
functions on X such that limn→∞ fn(x) = f (x) for all (or almost all) x ∈ X. In
general, it is not true that limn→∞

∫
fn dµ =

∫
f dµ; see Exercises 1 and 2.

We already have two good theorems about interchanging limits and integrals.
However, both of these theorems have restrictive hypotheses. Specifically, the Mono-
tone Convergence Theorem (3.17) requires all the functions to be nonnegative and
it requires the sequence of functions to be increasing. The Bounded Convergence
Theorem (3.30) requires the measure of the whole space to be finite and it requires
the sequence of functions to be uniformly bounded by a constant.

The next theorem is the grand result in this area. It does not require the sequence
of functions to be nonnegative, it does not require the sequence of functions to
be increasing, it does not require the measure of the whole space to be finite, and
it does not require the sequence of functions to be uniformly bounded. All these
hypotheses are replaced only by a requirement that the sequence of functions is
pointwise bounded by a function with a finite integral.

Notice that the Bounded Convergence Theorem follows immediately from the
result below (take g to be an appropriate constant function and use the hypothesis in
the Bounded Convergence Theorem that µ(X) < ∞).

3.35 Dominated Convergence Theorem

Suppose (X,S , µ) is a measure space, f : X → [−∞, ∞] is S-measurable, and
f1, f2, . . . are S-measurable functions from X to [−∞, ∞] such that

lim
n→∞

fn(x) = f (x)

for almost every x ∈ X. If there exists an S-measurable function g : X → [0, ∞]
such that ∫

g dµ < ∞ and | fn(x)| ≤ g(x)

for every n ∈ Z+ and almost every x ∈ X, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof Suppose g : X → [0, ∞] satisfies the hypotheses of this theorem. If E ∈ S ,
then∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣ = ∣∣∣∫
X\E

fn dµ−
∫

X\E
f dµ +

∫
E

fn dµ−
∫

E
f dµ

∣∣∣
≤
∣∣∣∫

X\E
fn dµ

∣∣∣+ ∣∣∣∫
X\E

f dµ
∣∣∣+ ∣∣∣∫

E
fn dµ−

∫
E

f dµ
∣∣∣

≤ 2
∫

X\E
g dµ +

∣∣∣∫
E

fn dµ−
∫

E
f dµ

∣∣∣.3.36
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Case 1: Suppose µ(X) < ∞.
Let ε > 0. By 3.32, there exists δ > 0 such that

3.37
∫

B
g dµ <

ε

4

for every set B ∈ S such that µ(B) < δ. By Egorov’s Theorem (2.76), there exists
a set E ∈ S such that µ(X \ E) < δ and f1, f2, . . . converges uniformly to f on E.
Now 3.36 and 3.37 imply that∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣ < ε

2
+
∣∣∣∫

E
( fn − f ) dµ

∣∣∣.
Because f1, f2, . . . converges uniformly to f on E and µ(E) < ∞, the last term on
the right is less than ε

2 for all sufficiently large n. Thus limn→∞
∫

fn dµ =
∫

f dµ,
completing the proof of case 1.

Case 2: Suppose µ(X) = ∞.
Let ε > 0. By 3.33, there exists E ∈ S such that µ(E) < ∞ and∫

X\E
g dµ <

ε

4
.

The inequality above and 3.36 imply that∣∣∣∫ fn dµ−
∫

f dµ
∣∣∣ < ε

2
+
∣∣∣∫

E
fn dµ−

∫
E

f dµ
∣∣∣.

By case 1 as applied to the sequence f1|E, f2|E, . . ., the last term on the right is less
than ε

2 for all sufficiently large n. Thus limn→∞
∫

fn dµ =
∫

f dµ, completing the
proof of case 2.

Riemann Integrals and Lebesgue Integrals
We can now use the tools we have developed to characterize the Riemann integrable
functions. In the theorem below, the left side of the last equation denotes the Riemann
integral.

3.38 Riemann integrable ⇐⇒ continuous almost everywhere

Suppose a < b and f : [a, b] → R is a bounded function. Then f is Riemann
integrable if and only if

|{x ∈ [a, b] : f is not continuous at x}| = 0.

Furthermore, if f is Riemann integrable and λ denotes Lebesgue measure on R,
then ∫ b

a
f =

∫
[a,b]

f dλ.

Proof Suppose n ∈ Z+. Consider the partition Pn that divides [a, b] into 2n

subintervals of equal size. Let I1, . . . , I2n be the corresponding closed subintervals,
each of length (b− a)/2n. Let
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3.39 gn =
2n

∑
k=1

(
inf
x∈Ik

f (x)
)
χIk

and hn =
2n

∑
k=1

(
sup
x∈Ik

f (x)
)
χIk

.

The lower and upper Riemann sums of f for the partition Pn are given by integrals.
Specifically,

3.40 L( f , Pn, [a, b]) =
∫
[a,b]

gn dλ and U( f , Pn, [a, b]) =
∫
[a,b]

hn dλ,

where λ is Lebesgue measure on R.
The definitions of gn and hn given in 3.39 are actually just a first draft of the

definitions. A slight problem arises at each point that is in two of the intervals
I1, . . . , I2k (in other words, at endpoints of these intervals other than a and b). At each
of these points, change the value of gn to be the infimum of f over the union of the
two intervals that contain the point, and change the value of hn to be the supremum of
f over the union of the two intervals that contain the point. This change modifies gn
and hn on only a finite number of points. Thus the integrals in 3.40 are not affected.
This change is needed in order to make 3.42 true (otherwise the two sets in 3.42
might differ by at most countably many points, which would not really change the
proof but which would not be as aesthetically pleasing).

Clearly g1 ≤ g2 ≤ · · · is an increasing sequence of functions and h1 ≤ h2 ≤ · · ·
is a decreasing sequence of functions on [a, b]. Define functions f L : [a, b]→ R and
f U : [a, b]→ R by

f L(x) = lim
n→∞

gn(x) and f U(x) = lim
n→∞

hn(x).

Taking the limit as n→ ∞ of both equations in 3.40 (see Exercise 9 in Section 1A)
and using the Bounded Convergence Theorem (3.30), we see that

3.41 L( f , [a, b]) =
∫
[a,b]

f L dλ and U( f , [a, b]) =
∫
[a,b]

f U dλ.

Note that f L ≤ f ≤ f U. Now 3.41 implies that f is Riemann integrable if and
only if ∫

[a,b]
( f U − f L) dλ = 0,

which happens if and only if

|{x ∈ [a, b] : f U(x) 6= f L(x)}| = 0.

However,

3.42 {x ∈ [a, b] : f U(x) 6= f L(x)} = {x ∈ [a, b] : f is not continuous at x},

as you should verify, which completes the proof.

Approximation by Nice Functions

In the next definition, the notation ‖ f ‖1 should be ‖ f ‖1,µ because it depends upon
the measure µ as well as upon f . However, µ is usually clear from the context.
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In some books, you may see the notation L1(X,S , µ) instead of L1(µ). Here we
will use the shorter notation because µ determines S (as the domain of µ) and X (as
the unique largest set in the σ-algebra S).

3.43 Definition ‖ f ‖1; L1(µ)

Suppose (X,S , µ) is a measure space. If f : X → [−∞, ∞] is S-measurable,
then the L1-norm of f is denoted by ‖ f ‖1 and is defined by

‖ f ‖1 =
∫
| f | dµ.

The Lebesgue space L1(µ) is defined by

L1(µ) = { f : f is an S-measurable function from X to R and ‖ f ‖1 < ∞.}

3.44 Example L1(µ) functions that take on only finitely many values

Suppose (X,S , µ) is a measure space and E1, . . . , En are disjoint subsets of X.
Suppose a1, . . . , an are nonzero real numbers. Then

a1χE1
+ · · ·+ anχEn

∈ L1(µ)

if and only if Ek ∈ S and µ(Ek) < ∞ for all k ∈ {1, . . . , n}, as you should verify.

3.45 Example `1 equals L1(counting measure on Z+)

If µ equals counting measure on Z+ and x = x1, x2, . . . is a sequence of real
numbers (thought of as a function on Z+), then ‖x‖1 = ∑∞

n=1|xn|. Is this case,
L1(µ) is often denoted by `1 (pronounced “little-el-one”). In other words, `1 is the
set of all sequences x1, x2, . . . of real numbers such that ∑∞

n=1|xn| < ∞.

The easy proof of the following result is left to the reader.

3.46 Properties of the L1-norm

Suppose (X,S , µ) is a measure space and f , g ∈ L1(µ). Then

• ‖ f ‖1 ≥ 0;

• ‖ f ‖1 = 0 if and only f (x) = 0 for almost every x ∈ X;

• ‖c f ‖1 = |c|‖ f ‖1 for all c ∈ R;

• ‖ f + g‖1 ≤ ‖ f ‖1 + ‖g‖1.

The next result states every function in L1(µ) can be approximated in L1-norm
by measurable functions that take on only finitely many values.
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3.47 Approximation by simple functions

Suppose (X,S , µ) is a measure space and f ∈ L1(µ). Then for every ε > 0,
there exists a simple function g ∈ L1(µ) such that

‖ f − g‖1 < ε.

Proof Suppose ε > 0. The definition of the integral of a nonnegative function
implies that there exist simple functions g+, g− ∈ L1(µ) such that 0 ≤ g+ ≤ f+

and 0 ≤ g− ≤ f− and∫
( f+ − g+) dµ <

ε

2
and

∫
( f− − g−) dµ <

ε

2
.

Let g = g+ − g−. Then g is a simple function in L1(µ) and

‖ f − g‖1 = ‖( f+ − g+)− ( f− − g−)‖1

=
∫
( f+ − g+) dµ +

∫
( f− − g−) dµ

< ε,

as desired.

3.48 Definition L1(R); ‖ f ‖1

• The notation L1(R) denotes L1(λ), where λ is Lebesgue measure on the
Borel subsets of R.

• When working with L1(R), the notation ‖ f ‖1 denotes the integral of the
absolute value of f with respect to Lebesgue measure on R.

3.49 Definition step function

A step function is a function g : R→ R of the form

g = a1χI1
+ · · ·+ anχIn

,

where I1, . . . , In are intervals of R and a1, . . . , an are nonzero real numbers.

Suppose g is a step function of the form above and the intervals I1, . . . , In are
disjoint. Then

‖g‖1 = |a1| |I1|+ · · ·+ |an| |In|.

In particular, g ∈ L1(R) if and only if all the intervals I1, . . . , In are bounded.
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Even though the coefficients
a1, . . . , an in the definition of a step
function are required to be nonzero,
the function 0 that is identically 0 on
R is a step function. To see this, take
n = 1, a1 = 1, and I1 = ∅.

The intervals in the definition of a step
function can be open intervals, closed in-
tervals, or half-open intervals. We will be
using step functions in integrals, where
the inclusion or exclusion of the endpoints
of the intervals does not matter.

3.50 Approximation by step functions

Suppose f ∈ L1(R). Then for every ε > 0, there exists a step function
g ∈ L1(R) such that

‖ f − g‖1 < ε.

Proof Suppose ε > 0. By 3.47, there exist Borel subsets B1, . . . , BN of R and
nonzero numbers a1, . . . , aN such that |Bk| < ∞ for all k ∈ {1, . . . , N} and

∥∥∥ f −
N

∑
k=1

akχBk

∥∥∥
1
<

ε

2
.

For each k ∈ {1, . . . , N}, there is a countable union of disjoint bounded open
intervals that contains Bk and whose Lebesgue measure is as close as we want to |Bk|
(by the definition of outer measure). For each of those countable unions of disjoint
open intervals, there is a finite union of a subcollection of the open intervals whose
Lebesgue measure is as close as we want to the Lebesgue measure of the countable
union. Thus for each k, there is a set Ek that is a finite union of disjoint bounded
intervals such that

|Ek \ Bk|+ |Bk \ Ek| <
ε

2|ak|N
;

in other words, ∥∥χBk
− χEk

∥∥
1 <

ε

2|ak|N
.

Now∥∥∥ f −
N

∑
k=1

akχEk

∥∥∥
1
≤
∥∥∥ f −

N

∑
k=1

akχBk

∥∥∥
1
+
∥∥∥ N

∑
k=1

akχBk
−

N

∑
k=1

akχEk

∥∥∥
1

<
ε

2
+

N

∑
x=1
|ak|
∥∥χBk

− χEk

∥∥
1

< ε,

completing the proof.

Luzin’s Theorem (2.82 and 2.84) gives a spectacular way to approximate a Borel
measurable function by a continuous function. However, the following approximation
theorem is usually more useful than Luzin’s Theorem. For example, the next result
plays a major role in the proof of the Lebesgue Differentiation Theorem (4.11).

Measure, Integration & Real Analysis. Preliminary edition. ©2018 Sheldon Axler



Section 3B Limits of Integrals & Integrals of Limits 95

3.51 Approximation by continuous functions

Suppose f ∈ L1(R). Then for every ε > 0, there exists a continuous function
g : R→ R such that

‖ f − g‖1 < ε

and {x ∈ R : g(x) 6= 0} is a bounded set.

Proof By 3.50, we need only prove this result in the case when f is the characteristic
function of a bounded interval. Suppose f = χ

[a, b]. Let δ be a number such that
0 < δ < ε. Define g : R→ R by

g(x) =



0 if x ≤ a− δ,
x−(a−δ)

δ if a− δ < x < a,

1 if a ≤ x ≤ b,
(b+δ)−x

δ if b < x < b + δ,

0 if x ≥ b + δ.

Then g is a continuous function, {x ∈ R : g(x) 6= 0} is a bounded interval, and
‖ f − g‖1 = δ < ε.

EXERCISES 3B

1 Give an example of a sequence f1, f2, . . . of functions from Z+ to [0, ∞) such
that

lim
n→∞

fn(m) = 0

for every m ∈ Z+ but lim
n→∞

∫
fn dµ = 1, where µ is counting measure on Z+.

2 Give an example of a sequence f1, f2, . . . of continuous functions from R to
[0, 1] such that

lim
n→∞

fn(x) = 0

for every x ∈ R but lim
n→∞

∫
fn dλ = ∞, where λ is Lebesgue measure on R.

3 Suppose λ is Lebesgue measure on R and f : R → R is a Borel measurable
function such that

∫
| f | dλ < ∞. Define g : R→ R by

g(x) =
∫
(−∞,x)

f dλ.

Prove that g is uniformly continuous on R.
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4 Suppose a < b and f : [a, b]→ R is a bounded Borel measurable function. Let
λ denote Lebesgue measure on R. Prove that∫

[a,b]
f dλ

= inf{
∫
[a,b]

h dλ : h is a simple Borel measurable function and f ≤ h}.

5 Let λ denote Lebesgue measure on R. Suppose f : R→ R is a Borel measurable
function such that

∫
| f | dλ < ∞. Prove that

lim
n→∞

∫
[−n,n]

f dλ =
∫

f dλ.

6 Let λ denote Lebesgue measure on R. Give an example of a continuous function
f : [0, ∞)→ R such that limt→∞

∫
[0,t] f dλ exists (in R) but

∫
[0,∞) f dλ is not

defined.

7 Let λ denote Lebesgue measure on R. Give an example of a continuous function
f : (0, 1)→ R such that limn→∞

∫
( 1

n ,1) f dλ exists (in R) but
∫
(0,1) f dλ is not

defined.

8 Verify the assertion in 3.42.

9 Verify the assertion in Example 3.44.

10 Suppose (X,S , µ) is a measure space such that µ(X) < ∞. Suppose p, r are
positive numbers with p < r. Prove that if f : X → [0, ∞) is an S-measurable
function such that

∫
f r dµ < ∞, then

∫
f p dµ < ∞.

11 Give an example to show that the result in the previous exercise can be false
without the hypothesis that µ(X) < ∞.

12 Suppose (X,S , µ) is a measure space and f ∈ L1(µ). Prove that

{x ∈ X : f (x) 6= 0}

is the countable union of sets with finite µ-measure.

13 For f : R → R and t ∈ R, define ft : R → R by ft(x) = f (x − t) [thus if
t > 0, then the graph of ft is obtained by shifting the graph of f to the right by
t units]. Prove that if L1(R), then

lim
t→0
‖ ft − f ‖1 = 0.
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